Фундамент

Как сделать расчет фундамента на опрокидывание

Фундамент: расчет возможного опрокидывания

Фундамент: расчет возможного опрокидывания

Представить себе опрокинутый фундамент частного дома достаточно сложно. Естественной причиной, по которой возможно опрокидывание небольшого дома, является ветер огромной силы, способный за счет парусности строения опрокинуть его набок. Например, как одиноко стоящую сосну, у которой нет фундамента, но вместо него есть корни.

Рис. 1. Варианты возможных поворотов и смещений фундамента: а – осадка с поворотом, б – осадка с поворотом и смещением, в – сдвиг по подошве.

Какой расчет необходим для основания дома?

Исходя из прямого назначения, которое состоит в равномерной передаче нагрузки сооружения на грунт, необходимо выполнить расчет ширины его опорной части и ее прочность.

Для этого необходимо определить вес сооружения, включая и собственный вес основания.

В расчет на прочность фундамента должны войти и снеговые нагрузки, передающиеся на него от кровли в зимнее время, и вес всего, что будет смонтировано и внесено внутрь помещения (отопительная система, водоснабжение, канализация, мебель и т. п.).

Ветровые нагрузки на невысокое здание в расчет фундамента на прочность не включают. Эти нагрузки учитывают, когда выполняют расчет на прочность такого элемента кровли, как мауэрлат, с помощью которого через стены они передаются на основание дома.

На рис. 1 показаны варианты возможных поворотов и смещений фундамента: а) осадка с поворотом, б) осадка с поворотом и смещением, в) сдвиг по подошве.

Рис. 2. Неправильный расчет прочности фундамента может привести к опрокидыванию всего сооружения.

На мелкозаглубленное основание в зимний период действуют выталкивающие силы, возникающие в результате пучения грунта. Неравномерное распределение этих сил и может привести к потере устойчивости фундамента, показанное на изображении, особенно в том случае, если по каким-либо причинам на основание не было возведено строение. Чтобы в этом случае исключить потерю устойчивости, грунт необходимо защитить от промерзания.

Если произошла потеря устойчивости, когда строительство дома было закончено, следует искать ошибки при расчете требуемой прочности. Но это все же не должно было привести к опрокидыванию всего сооружения, как это показано на рис. 2. Изображен небольшой дом, опрокидывание которого произошло не потому, что не был выполнен соответствующий расчет фундамента. При определении размеров основания и его заглубления, не были учтены физические свойства грунта (на изображении видно, что это песчаный грунт).

Нужен ли расчет основания частного дома на устойчивость?

Фундамент, который под действием внешних сил не опрокинется, не сдвинется в горизонтальной плоскости вместе с грунтом, считают устойчивым. На устойчивость рассчитывают фундаменты таких ответственных элементов, как опоры мостов, заводских труб и т. п.

В отличие от заводских труб расчет фундамента частных домов на опрокидывание можно не выполнять. И причина в том, что эти дома имеют сравнительно небольшую высоту. Если у заводской трубы центр тяжести и равнодействующая силы ветра находятся на значительной высоте от фундамента, в результате чего может образоваться момент достаточный для нарушения устойчивости, то для низкого строения, расчет по этому фактору просто не нужен.

В частном секторе в настоящее время также появляются отдельные строения, которые требуют расчетов их оснований на такое воздействие. Например, ветровые генераторы. На рис. 3 представлен 1 из вариантов основания для такого генератора. Следует обратить внимание на глубину заложения основания. Она явно превышает глубину промерзания грунта. Остальные же размеры на изображении 3 могут служить только для ориентирования и могут отличаться от фактических размеров. Высота вышки – НВ, для надежной работы генератора, зависит от местности, но в среднем ее можно считать равной 20 м.

Определение опрокидывающего момента

Рис. 3. Схема основания ветрового генератора.

На рис. 4 приведена расчетная схема с указанием сил, действующих на фундамент. Основным фактором, создающим опрокидывание, является момент MU, а основным препятствием этому является сила FU. Именно эта составляющая препятствует потере устойчивости.

Равномерно распределенная нагрузка Р представляет собой реакцию грунта на действие силы FU. Сила Qr оказывает влияние на сдвиг в горизонтальной плоскости. При расчете на сдвиг большое значение имеет коэффициент трения кладки по грунту. Для расчета на опрокидывание эту силу не учитывают

Для определения опрокидывающего момента MU необходимо знать скорость ветра и площадь сооружения, на которую он воздействует (парусность). Чтобы обеспечить работу ветрового генератора, необходима минимальная скорость, равная примерно 6-8 м/с. Однако, необходимо учесть, что скорости ветра могут быть значительно больше, поэтому следует рассчитывать на максимально возможную в данном районе скорость. Например, при скорости ветра 10 м/с давление составляет 60 Н/м2, а при скорости 50 м/с это давление составит 1500 Н/м2. В таблице № 1 приведены значения, по которым, зная максимальные скорости ветра, можно определить его давление.

Скорость ветра, м/с 1 5 10 15 20 25 30 40 50 Давление, Н/м2 0,60 15 60 135 240 375 540 960 1500

Зная скорость ветра V и площадь лопастей SЛ, по таблице 1 определяем соответствующее давление и по этой площади вычисляем силу РЛ, приложенную к краю вышки, то есть на расстоянии НВ от поверхности земли. С учетом глубины h, на которой расположена подошва основания, плечо составит:

Ветер будет действовать и на вышку по всей ее длине. Для определения площади, вначале определим среднее значение ширины вышки, LСР

Рис. 4. Схема сил, действующих на фундамент.

LВ-ширина вышки в верхней ее части; LН – ширина вышки у основания.

Определим площадь вышки, нормальную к направлению ветра:

и теперь определим общую нагрузку РВ как произведение площади SВ на значение давления из таблицы 1. Эта сила будет приложена посредине высоты вышки.

Теперь можно определить опрокидывающий момент.

Определение противодействующего момента

Для определения этого момента необходимо знать вес вышки со всеми устройствами, вес фундамента и вес грунта на нем. Анализируя рис. 4 можно сделать вывод, что противодействовать будет и грунт, расположенный по бокам по направлению действия опрокидывающего момента. Это действительно так, но только после того, как грунт станет достаточно плотным. А для этого потребуется определенное время. Поэтому в процессе строительства этот противодействующий фактор учитывать нельзя.

Как видно на рис. 4, расстояние от силы FU до точки О (проекция опорного ребра) равно а. Следовательно, условие устойчивости основания ветрового генератора будет:

где k >1- коэффициент надежности.

Как предупреждение следует указать, что приведенный расчет не учитывает многих факторов, которые обязательно учитывают при строительстве высотных зданий, заводских труб, железнодорожных и автомобильных мостов. Поэтому имеет смысл привлечь специалиста даже для установки такого, на первый взгляд, не сложного сооружения, как вышка.

Как сделать расчет фундамента на опрокидывание

Вывод: устойчивость конструкции обеспечена

Расчет рекламной конструкции с помощью программного комплекса APM WinMachine

Расчет верхнего строения (поперечных балок и оголовка) выполнен с помощью сис­темы автоматизированного расчета APM WinMachine модуля APM Structure3D, пред­назначенного для расчета напряженно-деформированного состояния стержневых, пла­стинчатых, оболочечных и твердотельных конструкций, а также их комбинаций.
В зависимости от ветрового района установки и высоты конструкции существу­ют два варианта исполнения поперечных балок (гнутый швеллер 236х70 и швеллер с усилением из того же сечения, длиной 2м) и оголовка (труба 160х160х8(С245) и 160х160х8(С345)) (см. табл 1) Проверка элементов ведется для каждого из вариантов исполнения, при этом рассматривается случай, при котором сумма изгибающих мо-ментов для элемента заданного сечения является наибольшей
Проверка прочности поперечных балок, выполненных из гнутого швеллера 236х70 без усиления
Расчетная схема (согласно табл.1 и табл.2) принимается для IV-го ветрового рай­она, высота стойки 4м, при этом нагрузка на поперечные балки (соотв . на верхнюю, среднюю и нижнюю) составит:

Проверка прочности сечения оголовка выполненного из трубы 160х160х8 (С245) Расчетная схема (согласно табл.1 и табл.2) принимается для IV-го ветрового рай­она, высота стойки 4.5м, при этом нагрузка на поперечные балки составит:

Погонная нагрузка на балки составляет:

Проверка прочности сечения оголовка, выполненного из трубы 160х160х8 (С345) и поперечных балок из гнутого швеллера с усилением
Расчетная схема (согласно табл.1 и табл.2) принимается для V-го ветрового рай­она, высота стойки 45м, при этом нагрузка на поперечные балки составит:

Погонная нагрузка на балки составляет:

Проверка прочности сечения оголовка, выполненного из трубы 160х160х8 (С345) и поперечных балок из гнутого швеллера с усилением
Расчетная схема (согласно табл.1 и табл.2) принимается для V-го ветрового рай­она, высота стойки 45м, при этом нагрузка на поперечные балки составит:

Погонная нагрузка на балки составляет:

Результаты расчета приведены в приложении к расчету (соотв. Приложению 2, 3)
Вывод: представленный расчет показал, что несущие элементы конструкции удов­летворяют требованиям прочности, максимальные эквивалентные напряжения не пре­вышают допустимых .

Расчет болтового соединения оголовка (рекламного поля) конструкции

Проверка сечения болтов М24 (Кл 8.8):

– усилие в одном болте от действия момента относительно оси Х-Х

усилие в одном болте от действия момента относительно оси Y-Y:

Итого на самый загруженный болт приходится
P = px+py=6197 + 1755 = 7952кг
Несущая способность болта М24 составит:
Nb = Rbt ×Ab = 4000×3.52 = 14080кг, где
Rbt – расчетное сопротивление болтов растяжению (Кл 8.8)
Abn – площадь сечения болта нетто
Итого: P = 7952 Список используемой литературы

1. СНиП 2.01.07-85* «Нагрузки и воздействия»
2. СНиП II-23-81* «Стальные конструкции»
3. Уманский А . А . «Справочник проектировщика», Москва 1960г. 4. Работнов Ю. Н . «Сопротивление материалов»
5. СНиП 23-01-99 «Строительная климатология»
6. СНиП 2.0311-85 “Защита строительных конструкций от коррозий”

* В качестве примера показано выполнение расчетов рекламной конструкции одним из ведущих операторов наружной рекламы, действующих на территории России.
** Используемые при расчетах рекламных конструкций СНиПы

Москва 2008г.

1 часть. Ветровая нагрузка

2.5. Расчет фундамента на устойчивость против опрокидывания и

Устойчивость
конструкций против опрокидывания
следует рассчитывать по формуле

,

где
–коэффициент
условий работы, принимаемый при проверке
конструкции, опирающихся на отдельные
опоры, для стадии строительства равным
0,95; для стадии постоянной эксплуатации
равным 1,0; при проверке сечений бетонных
конструкций и фундаментов на скальных
основаниях, равным 0,9; на нескальных
основаниях – 0,8;

–коэффициент
надежности по назначению сооружения,
принимаемый равным 1,1 при расчетах для
стадии постоянной эксплуатации и 1,0 при
расчетах для стадии строительства.

Опрокидывающие
силы следует принимать с коэффициентом
надежности по нагрузке, большим единицы.

Удерживающие
силы следует принимать с коэффициентом
надежности по нагрузке для постоянных
нагрузок

При
расчете фундаментов опор мостов на
устойчивость против сдвига по основанию
сила
стремится сдвинуть фундамент, а сила
трения его о грунт(по подошве фундамента) сопротивляется
сдвигу. Силаравна

где
– коэффициент трения фундамента по
грунту.

В
соответствии с требованиями СНиП 2.05.03
–84 устойчивость конструкций против
сдвига (скольжения) следует рассчитывать
по формуле

,

где
– сдвигающая сила,
кН, равная сумме проекций сдвигающих
сил на направление возможного сдвига;

–коэффициент
условий работы, принимаемый равным 0,9;

–коэффициент
надежности по назначению сооружения,
принимае

–удерживающая
сила, кН, равная сумме проекций удерживающих
сил на направление возможного сдвига.

Сдвигающие
силы следует принимать с коэффициентом
надежности по нагрузке, большим единицы,
а удерживающие силы – с коэффициентом
надежности по нагрузке, указанные выше.

В
качестве удерживающей горизонтальной
силы, создаваемой грунтом, допускается
принимать силу, значение которой не
превышает активного давления грунта.

При
расчете фундамента на сдвиг принимают
следующие значении коэффициентов трения
кладки по грунту:

Таблица
2.5.1. – Значении коэффициентов трения

§ 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига

Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu — сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.


Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания

При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О — см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а — расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.

Устойчивость конструкций против опрокидывания следует рассчитывать по формуле
Ми≤(ус/уn)Мz, (7.5)
где Мu и Мz — моменты соответственно опрокидывающих и удерживающих сил относительно оси возможного поворота (опрокидывания) конструкции, проходящей по крайним точкам опирания, кН·м; ус — коэффициент условий работы, принимаемый при проверке конструкций, опирающихся на отдельные опоры, для стадии строительства равным 0,95; для стадии постоянной эксплуатации равным 1,0; при проверке сечений бетонных конструкций и фундаментов на скальных основаниях, равным 0,9; на нескальных основаниях — 0,8; уn — коэффициент надежности по назначению сооружения, принимаемый равным 1,1 при расчетах для стадии постоянной эксплуатации и 1,0 при расчетах для стадии строительства.

Опрокидывающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы.

Удерживающие силы следует принимать с коэффициентом надежности по нагрузке для постоянных нагрузок Уf где µ — коэффициент трения фундамента по грунту.

В соответствии с требованиями СНиП 2.05.03—84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле
Qr≤(yc/yn)Qz, (7.6)
где Qr — сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус — коэффициент условий работы, принимаемый равным 0,9; уn — коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz — удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.

Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы — с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).

В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.

Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.

При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту:

Как сделать расчет фундамента на опрокидывание

Расчетная схема приведена на рисунке 2.4

Рисунок 2.4 – Схема к расчету проверки на опрокидывание

Для того чтобы фундамент не опрокинулся, должно выполнятся условие:

где ; – коэффициенты, соответственно условий работы и надежности по назначению;

– момент опрокидывающих сил;

– момент удерживающих сил, по формуле (2.19)

При нормальных условиях эксплуатации и возведении фундаментов в соответствии с нормой, его опрокидывание не представляется возможным.

Проверка на плоский сдвиг по подошве

Расчетная схема приведена на рисунке 2.5

Рисунок 2.5 – Схема к расчету проверки на плоский сдвиг по подошве

Для отсутствия плоского сдвига фундамента по подошве должно выполнятся условие:

где ; – коэффициенты, соответственно условий работы и надежности по назначению;

– сдвигающая сила, по формуле (2.21);

– удерживающая сила, по формуле (2.22).

где – коэффициент трения фундамента по грунту

Плоского сдвига по подошве фундамента не будет.

Проверка на выпучивание фундамента

Расчетная схема приведена на рисунке 2.6

Рисунок 2.6 – Схема к расчету проверки на выпучивание фундамента

где – расчетная удельная касательная сила пучения;

– площадь боковой поверхности фундамента в пределах расчетной глубины промерзания;

; – коэффициенты, соответственно условий работы и надежности по назначению

– расчетное значение силы, удерживающей фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, лежащий ниже глубины промерзания, по формуле (2.24).

где – периметр сечения фундамента в пределах талого грунта;

– расчетное сопротивление i-го слоя грунта;

– толщина i-го слоя талого грунта.

Вывод: фундамент устойчив.

Расчет по деформациям

Расчет основания по деформациям производится исходя из условия:

где – совместная деформация основания и сооружения, см

– предельное значение совместной деформации основания и сооружения, см, определяется по формуле:

Расчет осадки фундамента

Рисунок 2.7 – Схема для расчета осадки фундамента.

1)Определяем среднее давление на грунт под подошвой фундамента.

где – площадь подошвы фундамента, м2;

– расчетная вертикальная нагрузка в плоскости фундамента, кН, по формуле (2.27).

2)Определяем вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента:

где – глубина заложения подошвы фундамента, м;

– расчетный удельный вес грунта выше подошвы фундамента, кН/м3, по формуле:

3) Определяем дополнительное вертикальное напряжение в уровне подошвы фундамента:

4) Толщину слоев грунта ниже разбиваем на однородные по сжимаемости слои, толщиной не более

5) Строим эпюру вертикальных напряжений от собственного веса грунта ниже подошвы фундамента

где – удельный вес отдельных однородных слоев грунта, кН/м3;

– толщина отдельных слоев грунта, м;

– вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента.

6) Строим эпюру вертикальных дополнительных напряжений от внешней нагрузки ниже подошвы фундамента

где – коэффициент, принимаемый в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины.

7) Устанавливается нижняя граница сжимаемой толщи грунта. Она располагается на глубине, для которой выполняется условие:

8) Определяем осадки элементарных слоев

где – среднее значение дополнительного вертикального нормального напряжения в i-м слое грунта;

– толщина i-го слоя грунта, м;

– модуль деформации i-го слоя грунта.

9) Определяем полную осадку грунта

Все вычисления сведены в таблице 2.1

Таблица 2.1 – Расчет осадки основания

Глубина слоя от подошвы фундамента zi, м

Толщина слоя hi, м

Удельный вес грунта слоя , кН/м3

Напряжение от веса грунта на глубине zi , кПа

Напряжение от внешнего давления на глубине , кПа

Как правильно произвести расчет фундамента на опрокидывание

Типы фундаментов

В настоящее время применяется несколько типов фундаментов для различных видов сооружений и грунтов.

Ленточный вариант наиболее простой – по сути, это сравнительное невысокое основание, построенное под всеми стенами дома. Оно принимает на себя нагрузку и распределяет ее по поверхности земли. Такой фундамент, в свою очередь, опирается на плиты. Обычно сооружается для домов от трех этажей и выше. Причем внутреннее пространство используют для обустройства подвального помещения.

Здесь не требуется специальное оборудование и особо сложные технологии. Кроме того, популярность данной конструкции обусловлена простотой, долговечностью и устойчивостью к разрушению.

Конструкция столбчатого фундамента совершенно другая. Представляет она собой совокупность опор, погруженных в землю на определенное расстояние.

Используется для решетчатой (каркасной) либо бревенчатой постройки до 2-х этажей. Данный вид целесообразен в тех местностях, где на почву не влияют температурные изменения.

Плиточный фундамент представляет собой монолитное основание из железобетона, уложенное на дно котлована уплотненное предварительно:

Применяют в тяжелых плотных грунтах для больших многоэтажных сооружений (башни водонапорные, ретрансляционные и пр.).

Такой вариант также подойдет для отдельно стоящей дымовой трубы. Существенным недостатком считают высокую стоимость работ и материалов.

Свайный тип фундамента представляет собой конструкцию, состоящую из множества длинных столбов, объединенных поверху либо плитами или балками из бетона. Устраивают такие фундаменты в слабых почвах, неспособных удерживать тяжелые строения. Данный тип основания применяют для строительства многоэтажек.

По СНиПам для всех крыш необходим еще расчет ветровой нагрузки.

Расчет веса дома

Прежде чем приступить к расчетам, нужно узнать ряд параметров.

Так, для метра квадратного стен дома:

  • каркасного, утепленного минеральной ватой, вес удельный составляет от 30 до 50 килограммов на метр квадратный;
  • бревенчатого – 70-100;
  • кирпичного (толщина до 15 см) – от 200 до 270;
  • железобетонного (15 см) – 300-350.
  • чердачных с деревянными балками и утеплителем плотностью 200 кг на метр кубический – 70-100;
  • цокольных деревянных (при тех же параметрах теплоизоляции) – 100-150;
  • железобетонных – 500.
  • из жести – от 20 до 30 килограммов на метр квадратный;
  • рубероида – 30-50;
  • шифера – 40-50;
  • черепицы керамической – 60-80.

Как показывает практика, правильнее всего учитывать максимальные значения, приведенные выше – это позволит обеспечить фундаменту наибольший запас прочности.

Примем, что будущий дом (5 на 8 метров) имеет только один этаж, а стены по высоте достигают 300 см. Общая их длина с учетом внутренней перегородки составит 31 метр. Площадь же – 93 м 2 . Соответственно, вес стен – 25,1 тонны.

Совокупный размер перекрытий (их два – цокольное и чердачное) – 80 м 2 . Масса – 8 тонн.

Кровля для такого стандартного дома (с учетом всех скатов) будет иметь размер 96 метров квадратных и вес 2,88 тысячи килограммов.

Определение площади фундамента и его веса

Для того чтобы выяснить, сможет ли имеющийся на вашем участке грунт выдержать дом, нужно знать и вес дома, и массу собственно фундамента.

Поскольку чаще всего особняки возводятся на ленточных фундаментах, рассмотрим здесь именно этот вариант.

Для кирпичного дома основание углубляют в почву на 150 сантиметров, то есть ниже точки промерзания. К этому также добавляют еще полметра, выступающие над землей. То есть совокупно высота фундамента составляет 200 см.

Затем требуется выяснить длину всей ленты. Для этого периметр прибавляют к протяженности внутренне перегородки. То есть если основание имеет размер 5 на 8 метров и еще одну поперечную перемычку внутри, то в сумме получится 31 м.

Вслед за этим рассчитывается объем. Здесь длина фундамента умножается сначала на его высоту, а затем на ширину. Последнее значение примем за 50 сантиметров. Результат – 31 кубический метр.

Удельный вес бетона на м 3 составляет 2,4 тысячи килограммов. Умножив это значение на 31, получаем массу фундамента – 74,4 тонны.

Результат

Наконец, остается определить опорную площадь для вашего дома. Делается это просто – умножается длина стен фундамента на их ширину. В нашем случае выходит – 15,5 тысячи квадратных сантиметров.

Складываем массу всех конструкций:

  • стены – 25,1 тонны;
  • перекрытия – 8;
  • кровля – 2,88;
  • фундамент – 74,4.

Получается, что весь особняк у нас весит – 110,38 тонны. Этот результат нужно разделить на вышеупомянутую опорную площадь – 15500 см 2 . У нас выйдет, что на один квадратный сантиметр давит 7,12 килограмма.

Остается только свериться с нормами сопротивления грунтов:

  • крупный песок – от 3,5 до 4,5 килограммов на см 2 ;
  • средний песок – 2,5-3,5;
  • мелкий – 2,5-3;
  • глина твердая – 3-6;
  • пластичная – 1-3;
  • каменистые грунты, галька или щебень – 5-6.

Как видно, особняк вышел слишком тяжелый. В этом случае увеличиваем площадь фундамента за счет толщины стен.

Опрокидывание

Опрокидывающему моменту особого внимания уделять не следует, поскольку геометрия частного дома делает его маловероятным.

В целом расчет осуществляется следующим образом – от минимальной для региона ветровой нагрузки, отнимают подъемную силу, воздействующую на крышу. Расчет данных величин следует поручить архитектору.

Определяя силу, при которой может произойти сдвиг строения, учитывают:

  • рельеф местности;
  • наличие деревьев;
  • расположение прочих построек.

Сдвиг фундаментов по подошве и расчет на опрокидывание

Эти виды деформации могут произойти при действии горизонтальных нагрузок.

При недопустимости отрыва части подошвы от основания, когда равнодействующая проходит внутри ядра сечения подошвы фундамента, опрокидывание невозможно, поэтому проверку на опрокидывание не проводят.

Устойчивость фундамента на сдвиг по подошве рассчитывается по 1-ой группе предельных состояний. Такой сдвиг называется плоским сдвигом фундамента.

(1.1)

где F – расчетная сила, передаваемого на основание от основного и особого сочетания нагрузок;

– коэффициент условий работы, зависящий от вида грунта; = 0,8 – 1;

Fu – сила предельного сопротивления основания;

– коэффициент надежности в зависимости от класса сооружения; = 1,1 -1,2.

(1.2)

где – вертикальная составляющая внешней нагрузки, кН;

– вес фундамента и грунта на его уступах;

f – коэффициент трения кладки фундамента по грунту основания.

Расчет фундаментов производят в зависимости от расчетной схемы, исходя из следующих условий:

– осадки здания или сооружения (в том числе разность между осадками отдельных их частей) не должны превосходить предельно допустимых величин, для чего фундаменты рассчитывают по деформациям грунта основания;

– напряжения в грунтах основания не должны превосходить расчетного сопротивления грунта основания, исходя из чего определяют размеры площади подошвы фундамента;

– напряжения в материале фундамента не должны вызывать его повреждения, для чего проводят расчет прочности материалов фундамента;

– под действием горизонтальных сил моментов фундамент может потерять устойчивость положения (сдвинуться по направлению действия горизонтальных сил или опрокинуться по направлению действия моментов). Для предупреждения этих явлений иногда проводят расчеты на устойчивость против скольжения и опрокидывания.

Основные принципы проектирования оснований и фундаментов:

– проектирование оснований сооружений по предельным состояниям;

– учет совместной работы системы: основание – фундамент – несущие конструкции сооружения;

– комплексный учет факторов при выборе типа фундаментов и оценке работы грунтов основания в результате совместного рассмотрения:

1) инженерно – геологических условий площади строительства;

2) особенностей сооружений и чувствительности его несущих конструкций к развитию неравномерных осадок;

3) метода выполнения работ по устройству фундаментов и подземной части сооружения.

Задача проектирования и возведения фундаментов в связи с учетом вышеперечисленных факторов сложна, поэтому необходимо разрабатывать несколько вариантов устройства оснований и фундаментов, а затем на основе технико – экономического их сравнения принимать наиболее рациональное решение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector